
DeepAuth: Protecting Integrity of Deep Neural
Networks using Wavelet-based Steganography

Abstract—Training Deep Neural Networks (DNNs) is very
expensive in terms of computational power and the amount
of training data required. This led to the emerging business
trend where pre-trained models are treated as a first-class
object and traded as services or commodities in the Internet
marketplace such as Machine Learning as a Service (MLaaS).
However, researchers have shown that such pre-trained models
are vulnerable to different types of security threats, such as
poisoning attacks. Hence, it is essential to protect the integrity
and authenticity of these models in the emerging marketplace.
The challenge is to construct a method to derive a signature
of such pre-trained models and embed it while preserving the
accuracy of the original model. Also, the embedded signature
should be securely concealed within the model and can be verified
at all times.

To address these challenges, this paper proposes a novel
wavelet-based steganographic technique, called DeepAuth. Deep-
Auth generates the signature of a DNN model using its structural
information. To maintain the model accuracy, DeepAuth uses a
wavelet-based technique to transform weights in each layer from
the spatial domain to the frequency domain. It then identifies the
approximation coefficients to preserve the accuracy of the model
and utilizes the detailed coefficients to hide the signature using a
combination of secure key and scrambling vector. Our analysis
results show that DeepAuth can hide about 1KB signature in
each layer with 256-bit security level without having any impact
on the accuracy of the model. Several experiments are performed
on 3 pre-trained models (ResNet18, VGG16, and AlexNet) using
3 datasets (MNIST, CIFAR-10, and ImageNet) against 3 types
of manipulation attacks (input poisoning, output poisoning, and
fine-tuning). The results demonstrate that DeepAuth is verifiable
at all times without degrading the classification accuracy, and
robust against a multitude of known DNN manipulation attacks.

I. INTRODUCTION

Deep Neural Networks (DNNs) have been found to re-
markably outperform previous machine learning techniques
in a wide range of applications such as image recognition
[1], autonomous transport [2], speech processing [3], machine
translation [4], and games [5]. However, training these net-
works is computationally expensive and time-consuming. To
address these issues, there are several attempts to develop var-
ious open-source frameworks (e.g., TensorFlow [6], Pytorch
[7]) for simplifying the design and deployment of DNN, and
release pre-trained models such as ResNet [8], VGG [9], and
AlexNet [10]. These attempts have been successful to a certain
extent.

The trade-off between the significance of DNNs and the
burden of their training requirements has opened a new market
opportunity for Machine Learning as a Service (MLaaS). Com-
panies can design and train ML models using their datasets and
powerful platforms, and make such models, such as Google

Cloud ML Engine [11], Microsoft Azure ML Studio [12], and
Amazon Sagemaker [13], available to their customers. A large
number of small/medium companies are going to use such
MLaaS to commercialize their innovative ideas. Hence, we
expect to see a sharp growth in DNN models being made
available as MLaaS. That is, pre-trained models are treated as
a first-class object and traded as services or commodities in
the internet marketplace as MLaaS.

However, MLaaS faces several challenges concerning the
integrity and authenticity of underlying DNN models. These
models could be tampered by sophisticated attacks such as
poisoning (e.g., [14], [15]). Fig. 1 shows an example of
poisoning attacks – a stop sign can be misclassified as a speed
sign when the DNN model is tampered with slightly modi-
fied weights. Such attacks have consequences for the model
owner/developer, MLaaS provider, and service consumers as
none of them can verify the integrity and authenticity of the
models used in MLaaS. The challenge is that how to develop a
technique to derive and insert a signature in the models so that
the integrity and authenticity of models (e.g., weights, dataset
version, and outer layer) can be ensured at all times.

Existing approaches to protect the integrity of DNNs can
be broadly categorized into two types: (1) defense mecha-
nisms against adversarial samples and (2) defense mechanisms
against poisoning attacks. The former tries to determine if the
given input is benign or adversarial (see [16], [17], [18], [19],
[20]). This approach is generally effective to detect adversar-
ially crafted inputs, but cannot detect whether backdoors or
trojans have been inserted into DNN models. The latter aims
to address this by defending against the poisoning attacks by
anomaly detection, retraining and generating sensitive samples
[21], [22], [23]. Despite the effectiveness of these works,
they lack a mechanism to capture a fingerprint of the model
and embed the fingerprint invisibly within the model as a
unique signature before releasing it. The signature should
always be verifiable and hidden undetectably. Moreover, it
does not significantly degrade the accuracy of the original
model. Hence, the signature can be verified at all times to
ensure the integrity and authenticity of the model.

To address the aforementioned challenges, this paper ex-
plores a solution based on steganography. While steganogra-
phy may sound new to the machine learning community, it has
been widely studied and used in the multimedia domain [24].
It is a technique of hiding a secret message within a larger
transferred content (e.g., image or sound) so that only the
intended recipient can recover it [25]. Hence, steganography
would be a promising tool to secretly hide the signature in

Input

Classes

 Output

Weights

 [-1,1]

Stop Sign Speed Sign

Benign DNN Model Problem: altered DNN Model by backdoor

results in changing weights to fire other

neurons to misclassify.

Backdoor

 0.550.1

StopSlowSpeed

 First

Hidden

 Layer

 Last

Hidden

 Layer
0.90.30.1

Input

Classes

 Output

Weights

 [-1,1]

-0.62-0.4

StopSlowSpeed

 First

Hidden

 Layer

 Last

Hidden

 Layer
0.9 0.3 0.1

Fired

Neuron

Not Fired

Neuron

Outer Layer
Outer Layer

Fig. 1. Demonstration of an example of DNN poisoning attacks using
backdoors on the input image. On the benign DNN side, the input is a stop
sign and so the correct output is “Stop”. However, on the backdoored DNN
side, a backdoor inserted in the stop sign input to give a wrong prediction as
“Speed”.

order to provide the integrity and authenticity of DNN models;
However, the direct application of steganography to DNN
models has two limitations. First, it cannot ensure controlled
access to the signature because the hiding is performed in fixed
positions (i.e., it is difficult to ensure the confidentiality of the
hidden signature). Hence, once attackers know that there are
hidden signature bits, they may easily access and manipulate
them. Second, it has a distortion impact on the transferred
content. Such a distortion may not be a significant issue in
the multimedia domain as they rely on the perceptibility of
the human eye (e.g., a few greyer pixels are not a problem in
an image). However, in the context of DNN, it should be taken
carefully due to the sensitivity of weights in the hidden layers,
which might have significant impacts on the performance of
the DNN model.

To address those two challenges, this paper proposes a novel
wavelet-based steganography technique, called DeepAuth. To
the best of our knowledge, this is the first attempt to propose
a steganography-based technique for the integrity and authen-
ticity of DNN models.

To solve the distortion issue inherent to steganography, we
employ wavelet decomposition to transform weights in the
hidden layers from the spatial domain to the frequency domain.
We apply appropriate scaling to the coefficients to limit the
distortion and preserve the accuracy of the model. DeepAuth
generates a signature related to each layer using the structural
information and uses the detailed coefficients in the frequency
domain to hide the signature randomly bit-by-bit inside the
corresponding layer.

To strengthen the confidentiality of the signature and make it
undetectable, we use a combination of unique key and scram-
bling vector to encrypt and randomise the hiding process. We
performed both mathematical analysis and extensive empirical

exploration to find a suitable steganography level, weights size
per transform, appropriate coefficients, and scaling criteria.
Our studies show that DeepAuth can hide a 2-bits message
in each coefficient and the total of 1KB signature in each
layer with 256-bit security level without having any significant
impact on the accuracy of the model.

To validate DeepAuth, we provide extensive empirical evi-
dences by performing several experiments on three pre-trained
models (ResNet18 [8], VGG16 [9], and AlexNet [10]) using
three datasets (MNIST [26], CIFAR-10 [27], and ImageNet
[28]) against three types of manipulation attacks (input poi-
soning [14], output poisoning [15], and fine-tuning [29]). The
results prove that DeepAuth is verifiable at all times with
no noticeable effect on the classification accuracy, and robust
against a multitude of known DNN manipulation attacks.

The rest of the paper is organized as follows: Section II
gives the pertained background to our work. Our DeepAuth
technique is introduced in Section III. Section IV introduces
the theoretical analysis for DeepAuth. Section V presents the
experimental results to evaluate DeepAuth. Section VI presents
the related work. Finally, Section VII concludes the paper.

II. BACKGROUND

This section provides the required background information
to understand the proposed system. We briefly summarize the
deep neural networks, steganography and wavelet transform.

A. Deep Neural Network (DNN)

A DNN is a part of broader machine learning methods based
on artificial neural networks where input feature extraction
is performed automatically [30]. A DNN can be depicted as
a mapping function fΘ : Rn ⇒ Rm that matches an input
x ∈ Rn to an output y ∈ Rm based on the calculated
parameters Θ. Let us assume x is an image of number ‘6’ that
has to be classified by fΘ into y as a vector of probabilities
corresponding to C ∈ [0, 9] classes. The output with the
highest probability arg maxi∈[1,m]yi is pointing to the image
prediction label Ci (i.e., number ‘6’).

A DNN is constructed with L hidden layers. Each layer
li∈[1,L] has ni neurons. The value of each neuron, called
activation a, which is computed in a feed-forward propagation
way. ai activation for the ith DNN layer can be calculated as
follows

ai = ϕ(wiai−1 + bi) ∀i ∈ [1, L] (1)

where ϕ : Rn ⇒ Rn is a non-linear function that ensures
only crucial neurons to be fired (i.e., > 0) and forwards its
output as an input to the next layer. wi ∈ Rni−1 × ni is the
weights and bi ∈ Rni is the biases; both of them are learned
during training. The DNN output of the last hidden layer lL
activations is a function, called softmax. It can be calculated
as y = ϑ(wL+1aL + bL+1), where ϑ : Rn ⇒ Rn.

The most crucial parameters are the DNN weights wi in
each layer li. Their values are learned from the original
dataset. These weights ensure that only certain neurons are

2

fired leading to the most accurate classification. Naturally,
alterations to weights in the original DNN model (e.g., by
poisoning attacks) produce misclassification results.

The other crucial DNN element is the outer layer containing
the Ci class labels. Altering them yields a severe misclassifi-
cation without manipulating the weights.

Therefore, our steganographic algorithm focuses on preserv-
ing the integrity of weights in all hidden layers as well as the
outer layer without compromising the accurate functioning of
the models.

B. Steganography

The term steganography often gets confused or lumped
together with digital watermarking [25]. They are similar in
the sense that both techniques hide a message β in some
cover data D. However, they have different goals. The aim of
watermarking is that an eavesdropper cannot remove or replace
β in D. Hence, resilience is the main concern for the design of
watermarking. There are two types of watermarking: visible
and invisible [25]. The watermarking has been extensively
used to protect copyright and IP ownership.

On the other hand, steganography is always invisible, and
its aim is that an eavesdropper should not be able to detect
the presence of the secret β in D. Therefore, the resultant
distortion on D and the confidentiality of β are the two main
concerns in steganography.

Secret

 B

Carrier

data D

Embedding

Protected

 data D

Secret

 B

Retrieval

Protected

 data D

Secret

 B

Original

Verify
True False

Protected

data OK

Protected

data modified

Embedding Retrieval and Verification

Modified

 ?

~

~

~

Fig. 2. A typical steganography life cycle.

Steganography has been extensively used to protect the
integrity of the data in the multimedia domain such as
medical X-rays [31] and MRI images [32]. The procedure
generally consists of two stages: (1) embedding; and (2)
retrieval and verification (see Fig. 2). In the embedding stage
(D̃ = fe(β,D)), a designed algorithm fe hides a pre-defined
secret β into the carrier medium D to be D̃ which becomes
the protected content. During the verification (β̃ = fr(D̃)), a
developed algorithm fr retrieves a secret β̃ from D̃. β̃ needs
to be further verified with the original β. If they are the same,
it confirms that the carrier data D̃ is pure and not changed.
Otherwise, the carrier data is tampered by adversaries.

Steganography is used to protect the integrity and authen-
ticity of the multimedia data by directly embedding the secret

bits into carrier medium like images. In this work, we target to
protect the integrity and authenticity of DNN models. Hence, a
new steganographic technique needs to be developed to embed
secret bits into deep hidden layers in the DNN model so that it
does not lose the predictive capability, i.e., the sensitivity and
relationships of weights are maintained. The wavelet transform
is employed in DeepAuth to solve the distortion challenge. We
next provide a brief overview of the wavelet transform.

C. Wavelet Transform

Wavelet Transform (WT) is a popular linear function used
in the signal and image processing where the content (e.g.,
signal) is transformed from its spatial time domain into its
frequency domain to identify the most and the least significant
parts of the signal [33]. It is basically performed on the given
signal, which leads to decomposing it into different values,
called coefficients, that represent its frequency components at
a given time. WT is shown in Eq. 2,

C(i, j) =

∫ ∞
−∞

f(t)ψ(i, j)dt (2)

where i and j are positive integers that represent the transform
parameters. C is the resultant coefficients. ψ is a wavelet
function [34]. WT can be applied in either Continuous (CWT)
or Discrete (DWT) manner. However, the latter is preferred in
real-world applications because the analyzed information in
many cases comes in discrete numbers rather than continuous
functions [35].

To conduct DWT, two-band filters (high-pass and low-
pass) are applied to the original signal. Consequently, two
sub-signals (called bands) are obtained. The first is the low-
frequency components which represent the approximation of
the original signal. The second is the high-frequency com-
ponents which represent the detailed coefficients. When this
process is repeated multiple times, it is known as a multi-level
wavelet decomposition [34], [36]. DWT is defined in Eq. 3,

Y (a, b) =
∑
a

∑
b

X(a)Φab(n) (3)

where Y (a, b) represents wavelet coefficients; a and b
represent the shift and scale transform parameters. Φab(n)
represents the base time of the wavelet function which is
shown in Eq. 4,

Φab(n) = 2−a/2Φ(2−an− b) (4)

III. DEEPAUTH

Motivating Scenario: Fig. 3 shows an example of how our
DeepAuth can be used to validate the integrity and authenticity
of DNN models. The model developer uses DeepAuth to
protect his or her own DNN model before deploying it as
MLaaS by hiding the signature secretly. The trusted validator
requests the model from the MLaaS provider, and the signature
(i.e., hidden secrets) and security parameters from the owner to
validate the model using DeepAuth. The output of the process
can be shared between the three parties involved. Here, we as-
sume that their communication is securely protected. Note that

3

model developer, MLaaS provider, and trusted validator can
be managed by a single entity or multiple entities depending
on the service provisioning mechanism.

 Model Developer

MLaaS Provider Trusted Validator

Customer

Deploy D’

Send D’

Send signature

and security parameters

Check

Validate using

DeepAuth

Protect the model D using DeepAuth--> D’

2

1

4

5

6

7

Serve

3

Fig. 3. Example scenario of using our DeepAuth.

DeepAuth Requirements: The design goal of DeepAuth is
to balance the security and accuracy while applying steganog-
raphy to DNN models. We specifically consider the following
design requirements. Confidentiality: only authorised parties
are allowed to hold the secret keys and can retrieve the hidden
signature. Integrity: any alteration of a protected DNN model
(by poisoning or retraining) can be detected. Authenticity: the
origin and source of the model can be retrieved and veri-
fied. Distortion resistance: there is no distortion significantly
affecting the performance of the original model so that the
model with the hidden signature can be directly used for
prediction without removing it. Capacity: a large amount of
information can be secretly embedded without impacting other
requirements so that a reasonable size of signature can be
embedded. Accuracy: the prediction accuracy of the model
should not be significantly degraded due to the embedded
signature.

Algorithm 1 Embedding Steganography
Input: DNN model
Output: Protected DNN model
lL: last layer of the model
κ, ν: encryption key and scramble vector

1 κ, ν ← Generate secret(seed)
2 for i← 1 to lL do
3 r × s← Reshape(li,κ) // from 4D to 2D
4 M ×N ← Wavelet convert(r × s)
5 c← Prepare signature(li)
6 c̃← Encrypt signature(c)
7 M̃ × Ñ ← Generate scramble(ν, M ×N)
8 δ, %← Derive(M ×N)
9 M ′′ ×N ′′ ← Scale(M ×N ,δ, %)

10 M ′′ ×N ′′ ← Hide(M ′′ ×N ′′, M̃ × Ñ , c̃)
11 M ×N ← Rescale(M ′′ ×N ′′, δ , %)
12 r × s← Wavelet inverse(M ×N)
13 li ← Shape(r × s,κ) // from 2D to 4D

end

DeepAuth Algorithm: Based on the above-stated design re-
quirements, we propose DeepAuth, a wavelet-based steganog-

raphy algorithm. The process of applying steganography to
DNN models is summarized in Algorithm 1.

The algorithm works as follows. We first reshape the
hidden layer weights (Section III-A) to be ready for wavelet
transform as depicted in line 3 (Reshape). We then convert
the weights from the spatial domain to the frequency domain
using the wavelet transform (Section III-B) as shown in line
4 (Wavelet convert). We next prepare a unique signature for
each hidden layer and encrypt it using a key (Section III-C1)
as appears in lines 5-6 (Prepare/Encrypt). We then generate a
random matrix to ensure randomization of the hiding process
(Section III-C2) as shown in line 7 (Generate scramble). We
scale the resultant coefficients (Section III-D) before hiding to
preserve the sign and decimal accuracy as appears in lines 8-9
(Derive/Scale). We then start hiding the encrypted signature
bit-by-bit in the less significant coefficients following the
random matrix (Section III-E) as shown in line 10 (Hide).
Functions in lines 11-13 are basically to rescale the coeffi-
cients, convert them back from the frequency domain to the
spatial domain and finally shape the weights back to their 4D
form (Section III-F).

A. Weights Reshape

To ensure the weights in each DNN hidden layer li are
pre-processed for wavelet transform, they have been reshaped
from 4D (a× b× c× d) to 2D (r× s) form. Fig. 4 shows an
example of reshaping the weights in a DNN hidden layer by
DeepAuth.

e.g. DNN Layer 13
4D (3x3x256x512)

Reshape weights from 4D into 2D (r x s) using the key

Portion of weights matrix.
e.g. 2D (4608 x 256)

Reshaped

weights

Fig. 4. Example of how DNN weights reshaped from 4D into 2D.

B. Converting to Frequency Domain

Hiding the signature directly into hidden layer weights
may yield high distortion, leading to the degrade of the
model accuracy. To solve this challenge, DWT is employed
to convert the weights from their spatial domain into the
frequency domain so that the most significant coefficients are
preserved to rebuild the weights after hiding. Fig. 5 shows
a demonstration of (a) the original block of weights, (b)
converting the weights into frequency domain using DWT, (c)
wiping out all detailed sub-bands as zeros (50% of all) while
maintaining the approximation sub-bands, and (d) converting
back to spatial domain for rebuilding the original weights
from the approximation sub-bands alone. The observations
of the results from these steps motivate us to use the signal
processing techniques to increase the capacity of hiding the
signature with little distortion effect into the original model.

4

0 50 100 150 200 250 300 350 400 450 500

DNN Weights Index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d
e

(a) Original Weights - DNN ResNet18 pretraind on ImageNet

0 5 10 15 20 25 30

Wavelet Coefficient Index

-0.6

-0.4

-0.2

0

0.2

0.4

M
a
g
n
it
u
d
e

(b) Frequency domain 32 subbands after Wavelet transform

0 5 10 15 20 25 30

Wavelet Coefficient Index

-0.6

-0.4

-0.2

0

0.2

0.4

M
a
g
n
it
u
d
e

(c) Zero all detailed subbands (17-to-32)

0 50 100 150 200 250 300 350 400 450 500

DNN Weights Index

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

A
m

p
lit

u
d
e

(d) Rebuilt Weights - only using approximation subbands (1-to-16)

Fig. 5. (a) A plot of DNN ResNet18 model weights from one layer; (b) frequency domain sub-bands plot after applying wavelet transform; (c) after wiping
out (zeros) in all detailed sub-bands (i.e., 50% of all); and (d) a rebuilt version for DNN ResNet18 weights from only approximation sub-bands.

More importantly, manipulation of any DNN weights
results in failure to reconstruct the exact wavelet coefficients
of the original DNN weights. Hence, we do not need to
hide a signature in all weights to protect the integrity of the
DNN model since the embedding process is performed in
the frequency domain. Any change in actual weights in the
spatial domain yields different frequency decomposition tree
(see the results in Section V).

In our approach, we apply 5 levels of wavelet packet decom-
position to each layer of a DNN model (e.g., ResNet18) which
results in 32 sub-bands as shown in Fig. 20 (see Appendix
VIII-D). A wavelet family, called Daubechies with the order
2 (db2), is chosen in the transformation process because its
performance in analysing discontinuous-disturbance-dynamic
signals has already been proven in [37]. To achieve the lowest
distortion on each layer, the low approximation sub-bands (i.e.,
from 1 to 16) are not changed because they represent the
most significant features to rebuild the DNN layer’s weights.
On the other hand, several bits are manipulated in the rest of
the detailed sub-bands to embed signature bits; the number of
bits that can be embedded is called the steganography level.
To guarantee the lowest acceptable distortion on the actual
DNN model layers, several experiments were performed to
select an appropriate steganography level (i.e., how many bits
can be embedded into the least significant sub-bands) and the
number of weights per transform (see Fig. 6). As shown in Fig.
6, about two bits can be hidden in the randomly-selected high
frequency sub-band coefficients. The number of weights per
transform should be between 2000 and 12000. Further details
are provided in Section V. Note that our benchmark for the
acceptable distortion is to maintain the accuracy of the original

model.

5 10 15 20 25 30 35 40 45 50 55 60

Case Number

0

0.5

1

1.5

2

2.5

T
h

e
 a

m
o

u
n

t
o

f
D

is
to

rt
io

n

0

0.5

1

1.5

2

2.5

 1bit
 2bits
 3bits
 4bits
 5bits

Findings

- 2bits per coefficient is the selected one (Distortion <0.25%)

- Number of weights should be >2K and < 12K

First case

2,000 weights

Increase number of weights

by 165 each case

Last case

12,000 weights

Fig. 6. Resultant distortion impacting DNN hidden layers from various
steganography levels and the number of weights per transform.

Converting the weights into their frequency domain before
hiding the signature assists us to (i) reduce the distortion by
keeping significant coefficients intact, (ii) expand the capacity
by using all detailed sub-bands for embedding, and (iii) ensure
the integrity by detecting any change due to the sensitivity of
the transformation.

C. Steganography Confidentiality Protection

Steganography alone cannot ensure the confidentiality of
the signature because the hiding process is performed at fixed
positions that can be exposed to attackers. To solve this
challenge, a 256-bit security key κ and a scramble vector
νi∈[1,256] pre-filled with random values are produced for every
DNN model. These two parameters are known only to the

5

legitimate validators, and used to enforce 2 levels of security
as follows.

Dataset

Name: Image-net

Hash:70270af85842c9e89bb428ec9976c926

Model

Name: ResNet18 Input size: 224x224x3

Layers: 18 Created by: Microsoft

Hidden Layer X

Number: 3

Inner Dim: 7x7 Outer Dim: 3x64

Outer Layer

Hash: fbdcb6211ea7138b8a199a221315412

Signature

Security Key

(e.g. Xym%...)

Convert into bits

0101000111101 …

1010111100001 …

Encrypt

=

1110001011001 …

Secret bits

Encrypted

Signature

Fig. 7. Example of how sensitive information is obfuscated before hiding.

1) Encrypt Signature: The signature is a collection of
sensitive structural information of the model (e.g., dataset
hash, model input size, layer dimension, total weights, outer
layer hash). κ is used to obfuscate the signature before the
hiding process using a symmetric cryptography algorithm.
Without loss of generality, we use AES here for encryption.
(see Fig. 7). This is shown in Eq. 5,

c̃⇐ ξ(κ, c) (5)

where ξ is an AES algorithm, κ is the key; c is the original
signature; and c̃ is the encrypted signature.

2) Generate Scramble: To achieve the goal of embedding
the signature in a fully random way and differently among
DNN layers, the scramble vector ν (i.e., filled with random
values) is employed. It creates a random sequence of coeffi-
cients in a form of 2D matrix that will be followed to embed
the signature. This is shown in Eq. 6,

Z ⇐

{
M̃ = fx(ν)

Ñ = fx
′(ν)

(6)

where M̃ and Ñ are the generated sequence of numbers; fx
and fx′ are the scrambling functions. The combination of M̃
and Ñ is used to build a 2D M̃ × Ñ matrix Z (see Eq. 7).

Z{M̃, Ñ} =

m̃1, ñ1 m̃1, ñ2 · · · m̃1, ñn
m̃2, ñ1 m̃2, ñ2 · · · m̃2, ñn

...
...

. . .
...

m̃M̃ , ñ1 m̃M̃ , ñ2 · · · m̃M̃ , ñÑ

 (7)

Fig. 8 shows a demonstration of how fx uses ν∈ [1, n] to
produce a random hiding sequence. An ordered list M̃ of
the size of DWT coefficients M is created. The scrambling
process starts with M̃ following the random values in ν. This
is to prevent two identical sequences being generated. Another
carefully considered condition is that using mathematical
modulo over the random values of ν guarantees us to obtain
finite field numbers in the range of [1, M]. Let us do the
first scramble: steps 1 and 2. The pointer starts from the last
cell of the ordered list M̃ which has the value of ‘8’. It is
then swapped with another cell in M̃ (i.e., the position of

that cell is the first random number in ν which is ‘2’). Then,
the pointer over M̃ is reduced by 1 and the pointer over ν
is increased by 1. Eventually the loop outputs a scrambled
vector M̃ . By only reversing the pointer over ν, fx′ follows
almost identical steps to generate Ñ . Finally, M̃ and Ñ are
combined to compose the 2D matrix sequence. However, the
ν is much longer (i.e., ≥ 256) in the proposed model.

The above two levels of security guarantee the strong
confidentiality of the hidden signature. This is achieved by
ensuring that only an authorized validator has κ and ν to
recover and decrypt the signature.

2 6 4 1 5 8 3 7V=

Position = 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8M=

Position = 1 2 3 4 5 6 7 8

Swap M[n] M[V[i]] , where n=8, i=1

1 2 3 4 5 6 7 8M=

Position = 1 2 3 4 5 6 7 8

Decrease n-1 vs Increase i+1

6 2 8 1 7 4 5 3Scrambled

M=

1

2

Repeat steps 1-to-2 with

n & i both start from 8 to 13

7 4 1 8 5 2 3 6Scrambled

N=

6,7 6,4 6,1 6,8 6,5 6,2 6,3 6,6

2,7 2,4 2,1 2,8 2,5 2,2 2,3 2,6

8,7 8,4 8,1 8,8 8,5 8,2 8,3 8,6

1,7 1,4 1,1 1,8 1,5 1,2 1,3 1,6

7,7 7,4 7,1 7,8 7,5 7,2 7,3 7,6

4,7 4,4 4,1 4,8 4,5 4,2 4,3 4,6

5,7 5,4 5,1 5,8 5,5 5,2 5,3 5,6

3,7 3,4 3,1 3,8 3,5 3,2 3,3 3,6

Build 2D Scramble Matrix M x N
4

Scrambled

Matrix

Scramble Vector – filled with random values

Ordered List – filled in ascending order

Lo
o

p

Demo for first step

Fig. 8. Demonstration of generating a 2D scrambling matrix order M̃ × Ñ
from a scramble vector ν.

D. Scale Coefficients

To protect the accuracy of neurons at the hidden layers
and preserve the sign of weights, two factors are derived
after analysing millions of weights. The first factor δ is used
to ensure that all values are positive (e.g., the lowest value
+(−1)). The second factor % is used to maintain all four
decimal values (e.g., × 10000) (see the impact in Fig. 9).
δ and % are used to scale the coefficients before the hiding
process so that the behaviour of neurons in the networks are
preserved.

1

2

0

DNN Test neuron steps: (i) Calculate activation, (ii) Apply non-linear ‘relu’ function, and (iii) If >0 fired.

Test neuron

i. 1(-0.5534)+2(+0.1122)=-0.3294

ii. relu(-0.3294) = 0

iii. 0 → ‘not fired ’.

(a) Original DNN behaviour

1

2

Test neuron

i. 1(+0.6513)+2(+0.1432)=0.9377

ii. relu(+ 0.9377) = +0.9377

iii. +0.9377→ ‘fired ’.

(b) After steganography without scaling

1

2

0

Test neuron

i. 1(-0.5531)+2(+0.1124)=-0.3283

ii. relu(-0.3283) = 0

iii. 0 → ‘not fired ’.

(c) After steganography with scaling

0.93

Fig. 9. Example shows the impact of applying the derived δ and % before
hiding.

E. Hiding

The hiding process is summarized in Fig. 10. Recall the
steps explained in Figs. 4, 7, and 8. The signature’s bits
are hidden bit-by-bit in the scaled coefficients M ′′ × N ′′

corresponding to M̃ × Ñ generated in the random order.

6

To provide the model accuracy comparable with the baseline
prediction accuracy in the original model, we hide only 2-bits
for each coefficient.

Portion of coefficients matrix 2D (M’’ x N’’)

6,7 6,4 6,1 6,8 6,5 6,2 6,3 6,6

2,7 2,4 2,1 2,8 2,5 2,2 2,3 2,6

8,7 8,4 8,1 8,8 8,5 8,2 8,3 8,6

1,7 1,4 1,1 1,8 1,5 1,2 1,3 1,6

7,7 7,4 7,1 7,8 7,5 7,2 7,3 7,6

4,7 4,4 4,1 4,8 4,5 4,2 4,3 4,6

5,7 5,4 5,1 5,8 5,5 5,2 5,3 5,6

3,7 3,4 3,1 3,8 3,5 3,2 3,3 3,6

Build 2D Scramble Matrix M x N

11 10 0010 11001 …

11

10

Hide secret bits in the 2D M’’ x N’’ coefficients matrix following the 2D M x N random order
Encrypted

Signature

Reshaped

weights

Scrambled

Matrix

Fig. 10. Block diagram summarizes the hiding process and uses the infor-
mation explained in Figs. 4, 7, and 8.

F. Inverse Wavelet to Rebuild Layer

The resultant detailed coefficients after the hiding process
are called stego coefficients that should be protected. At this
stage, the stego coefficients are rescaled and re-embedded back
into the 32 sub-bands coefficients matrix before applying the
inverse DWT to convert weights from their frequency domain
to their original space domain. The result of the reconstructed
weights is called stego weights (containing the hidden signa-
ture), which are almost similar to the original weights. The
advantage of this approach is that the stego weights can be
used for the prediction. However, only authorized validator
(i.e., with κ and ν) can extract the signature and verify it. The
inverse DWT is defined by Eq. 8,

X =
∑
a

∑
b

Y (a, b)Φab(n) (8)

where X is the weights in their original time domain.
Finally, the weights are reshaped back from the 2D into their
original 4D shape before integrating them into the DNN layer
li.

G. All Hidden Layers Protection

The hiding steps explained in Algorithm 1 are repeated for
each hidden layer li∈[1,L]. The steps of generating the scramble
matrix M̃ × Ñ are repeated for each hidden layer. The only
difference between the layers is that we shift the index i over
ν by the hidden layer position h. Hence, we can generate a
unique scrambling matrix for each layer.

H. Retrieval and Validation

To accurately extract and decrypt the signature, the validator
must have the security key κ, the scramble vector ν, the origi-
nal signature, and the protected model D̃. The process is nearly
similar to the hiding steps, but the signature bits are recovered
rather than embedded. Fig. 11 demonstrates the required steps.
First, weights at each layer li are fetched and shaped using
κ before applying DWT. Then, the detailed coefficients are
selected and scaled. Next, the random hiding order is generated
using ν and followed to retrieve the signature bits. Finally, κ

is used to decrypt the signature bits and verify the retrieved
signature from each hidden layer. Thus, a slight change even
in one layer can be detected and highlighted. The outer layer
is also checked by comparing its current hash value with the
hidden hash value to ensure the correctness of output classes
at all times.

Input

Classes

 Output

 0.55

StopSlowSpeed

Outer Layer

0.1

Hidden

Layer 1

Hidden

Layer n

2

3

Signatures are retrieved from

hidden Layers (one-by-one) DWT

Decomposition

vs001101011..

Extracted Original

=

Check Hidden Layers

vsXy3naz.... Xy3naz....

Check Outer Layer

Claculate Hash

OriginalCalculated

=

Extract

001101011..

vs111101011..

Extracted Original

=

Extract

111101011..

vs010101011..

Extracted Original

=

Extract

010101011..

vs110001011..

Extracted Original

=

Extract

110001011..

DWT

DWT

DWT

Fig. 11. Block diagram shows the retrieval and validation process.

IV. THEORETICAL ANALYSIS FOR DEEPAUTH

In this section, we show that DeepAuth satisfies the design
requirements stated in Section III through our theoretical
analysis results.

A. Confidentiality Strength

Confidentiality is achieved with two security parameters: a
security key κ and a scramble vector ν. Both parameters are
needed along with the model to recover the hidden signature.
Moreover, an attacker has to be aware of the existence of the
hidden signature before performing the brute force attack to
retrieve it, which makes it extremely difficult to do.

For the security of DeepAuth, it is critical to keep κ and ν
confidential because they are required to (recall Figs. 4, 7, and
8): (1) reshape weights from 4D into 2D form, (2) obfuscate
the signature, and (3) create a random coefficients’ sequence
as 2D M̃×Ñ matrix to embed the bits uniquely in each layer.
We expect two involved parties (e.g., the data owner and the
validator) should securely protect these parameters.
κ can be quantified as the entropy bits’ number 4H (see

Eq. 9) where 24H is the supreme possibilities that would need
to be examined by the intruder during a brute-force attack.

4H = log2W
G (9)

where G is the length of the total symbols and W is the set of
symbols. Assume 4H ≥ 256. Then, the intruder has to search
2256 ∼= 1.115792×1076 to find κ, which yields a 256-bit level
strength.
v is a randomisation vector as shown in Eq. 10,

ν = [γ1, γ2, .., γn] (10)

where n is the number of total entries; and γ ∈ R is a
unique random number generated by a strong PRNG using a

7

large seed ~s to provide sufficiently secure randomness. As ν is
designed to be unique and independent from κ, the attacker has
to spend O(n!) time to find ν at the worst case. Assume ν has
n = 256 unique entries; thus there are 256! possible vectors.
This search space is approximately ∼= 8.5781 × 10506 ∼=
256-bit level strength which is computationally infeasible to
enumerate.

B. Integrity and Authenticity

To ensure the integrity of the DNN model, all hidden layers
li∈[1,L] should be protected in their frequency domain. Any
change of li weights in their spatial-domain yields different
DWT as explained in Section III-B. The outer layer is also
strongly protected by hashing its values and embedding it into
each li. To guarantee the authenticity and prevent retrieving
the hidden information without κ and ν, the 32 sub-bands co-
efficients matrix after DWT decomposition of weights should
have a suitable size (e.g., ≥ 4000) as shown in Eq. 11,

T =
r∑
i=1

R!×
c∑
j=t

C! (11)

where T is the total number of possibilities; R and C are
the rows and columns, respectively, of the 32 sub-bands
coefficients matrix; and t is the selected detailed coefficients
that can be used from each row.

Assume 4096 weights from only one layer l3, and their 32
sub-bands coefficients are in the size of 128×32 after applying
DWT. If we assume that the threshold is 16 (i.e., when t = 16
in Eq. 11), T can be calculated as shown in Eq. 12,

T =

128∑
i=1

128!×
32∑
j=16

32!⇒ T ∼= 8.068256× 10194 (12)

Consequently, we can see that it is computationally infea-
sible to break the authenticity of the model.

C. Capacity

The maximum amount of embedded secret bits (for the
signature) in each hidden layer li mainly depends on two
factors: (1) the number of weights and (2) the hidden bits
per weight. However, if we hide even 1 bit in weights directly,
the distortion due to the hiding process would be high. This is
one of the main reasons to transform weights from their space
to the frequency domain. Based on that, another dimension
becomes very important to the hiding capacity which is the
coefficients’ selection process. In the proposed algorithm, the
maximum number of bits that can be hidden in a set of weights
to maintain the lowest distortion impact is shown in Eq. 13,

b =

t∑
i=1

n

2
×B (13)

where b is the total hidden bits; t is the detailed sub-bands;
n is the number of total coefficients in one sub-band; and B
is the steganography level (i.e., number of hidden bits in each
sub-band’s coefficient).

For better understanding, assume that a five-level DWT
decomposition is applied to a set of weights from layer li
where the number of resultant sub-band coefficients at each
layer is n = 512. Therefore, the 2D detailed sub-bands
are in the size of 64 × 16 (Here, 16 is the value of t in
Eq. 11). Also, assume that B = 2 bits are hidden in each
coefficient. Therefore, around 2048 bits of sensitive data can
be hidden inside that set of weights. In practice, the total
number of weights varies among layers. In this paper, the
hidden information inside each layer li is fixed to 8192 bits
(i.e., 1 KB). Hence, DeepAuth is able to offer a reasonable
capacity to embed a large number of bits (for the signature).

V. EVALUATION

This section presents the evaluation results of DeepAuth and
shows its effectiveness against various attacks.

A. Datasets

In our evaluation, we have used three well-known datasets.
First, a labelled dataset of handwritten digits (0-9), named
”MNIST”, which is a subset of a larger NIST database. It
contains 60,000 training images and 10,000 testing samples
[26]. It has been size-normalized in collaborative efforts
between Microsoft Research, Google Labs, and New York
University. Second, a dataset of 10 classes (i.e., airplanes,
cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks),
named ”CIFAR-10”, which is a subset from 80 million tiny
images repository collected by groups at MIT and New York
University. CIFAR-10 is labelled by The Canadian Institute for
Advanced Research and contains 50,000 training images and
10,000 testing samples [27]. Third, ImageNet public dataset,
which includes 1.2 million images with 1,000 objects [28].

We use ResNet18 model for our evaluation [8]. ResNet18 is
a pre-trained special type of DNN, called Convolutional Neural
Networks, which have shown to be remarkably successful in
a range of computer vision and pattern recognition tasks [38].
Its architecture has 18 layers deep and been pre-trained on
ImageNet. To evaluate that DeepAuth is also applicable to
other models, we repeat the experiments on two other older
architectures pre-trained on ImageNet: AlexNet [10] (8 layers)
and VGG16 [9] (16 layers).

B. Evaluation Metrics

This section presents the evaluation metrics used. Three
widely-used metrics have been used to closely monitor the
distortion effect on the protected model, the classification
accuracy, and the retrieved hidden signature after the attacks.

1) Distortion: To precisely evaluate our technique’s impact
on DNN model, the margin between the original D and
protected models D̃ has been thoroughly monitored using the
percent of root-mean-square difference (PRD). The PRD is a
widely-used measurement that is known for its precision of
detecting any recomposition error between the original and
the recomposed signals as defined in Eq. 14 [39],

PRD =

√∑n
i=1(xi − x̃i)2∑n

i=1(x2
i)

× 100% (14)

8

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-1

-0.5

0

0.5

-1

-0.5

0

0.5

-1

V
a
lu

e

0 100 200 300 400

Sample number

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-1

-0.5

0

0.5

-1

-0.5

0

0.5

-1

V
a
lu

e

0 100 200 300 400

Sample number

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-1

-0.5

0

0.5

-1

-0.5

0

0.5

-1

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

V
a
lu

e

0 100 200 300 400

Sample number

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
a
lu

e

(c)

(b)

(a)

Original Weights - ImageNet dataset

Stego Weights - ImageNet dataset

Original Weights - CIFAR10 dataset

Stego Weights - CIFAR10 dataset

Original Weights - MNIST dataset

Stego Weights - MNIST dataset

Extracted Weights - MNIST datasetExtracted Weights - CIFAR10 datasetExtracted Weights - ImageNet dataset

Fig. 12. Six examples of the weights of DNN hidden layers: (a) the original form; (b) stego form (i.e., containing hidden signature) that obtained after
applying our DeepAuth, and (c) Extracted form after removing the hidden signature.

where x(i) and x̃(i) are the original and recomposed weights,
and n is the size of weights from each layer.

The PRD is also employed to accurately calculate the
resultant effects caused by the recovery process (i.e., between
the original and the extracted weights).

2) Accuracy: The performance accuracy of the protected
model D̃ with respect to the original D needs to be carefully
measured to understand the impact of our technique on the
accuracy of the DNN models. We use the score for the
degradation as shown in Eq. 15,

fχ(~τ ,D)⇒ S ∼= S̃ ⇐ fχ(~τ , D̃) (15)

where fχ is a classification function, ~τ is the testing subset,
and S and S̃ are the accuracy score before and after protecting
the model. We apply Bit Error Ratio (BER) on the signature
after every retrieval process to measure any data loss (i.e., even
one bit) as follows [40],

BER =
Br
BT
× 100% (16)

where Br is the number of erroneous bits, and BT is the
number of bits.

C. Experiments
Steps Summary: Our experiment steps can be summarised

as follows: (1) Train ResNet18 architecture with both MNIST
and CIFAR-10 training datasets; we name the resultant models
D1 and D2. (2) Test the classification baseline accuracy of
both D1 and D2 using MNIST and CIFAR-10 testing datasets.
(3) Apply our steganographic technique “DeepAuth” to both
D1 and D2; we name the obtained models D̃1 and D̃2. (4) Test
the classification accuracy of both D̃1 and D̃2 using MNIST
and CIFAR-10 testing datasets. (5) Verify the accuracy of the
retrieved information after the extraction process using BER.
(6) Test the weights difference before and after DeepAuth
using PRD. (7) Attack D̃1 and D̃2 using various adversarial
mechanisms and evaluate the integrity of the hidden bits. (8)
We repeat these steps on the ResNet18 itself as it has been pre-
trained on ImageNet, which is a large scale visual recognition
dataset of 1.2 million images. (9) We experiment DeepAuth
on two other widely-used architectures (i.e., AlexNet and
VGG16) to ensure its effectiveness. (10) We finally perform
an out of the box experiment to validate the accuracy impact
using randomly picked samples from the Internet.

To obtain the neutral and unbiased results, all experiments
performed using κ = 256 and ν = 256. weights size per
transform varies between ≥ 4000 ∼ ≤ 12000 and a maximum

9

of 2-bits are hidden in every selected detailed coefficient (see
Fig. 6). The total of 8,192 bits (i.e., around 1KB) is embedded
in each hidden layer. All deep layers have been protected with
our technique. ResNet18 architecture has been used with three
datasets as it is newer than AlexNet and VGG16. We optimised
all models using Stochastic Gradient Descent (SGD), an initial
learning rate of 1e-4, 10 epochs, weights learn rate factor of
10, bias learn rate factor of 10 and batch size of 100.

Accuracy: Table I shows the classification accuracy of the
3 trained models obtained from the 3 datasets before and after
applying our DeepAuth technique with different steganogra-
phy levels. The experiments match with our early observations
shown in Fig. 6. Once we exceed the steganography level
of 2-bits per coefficient, the accuracy starts to be affected.
We observe that changing 2+ bits in the frequency domain
coefficients results in flipping the first decimal values of the
rebuilt weights. Such flip impacts on the set of neurons to
be activated. On the contrary, the steganography level of 2
bits affects only the fourth decimal values and rarely the third
decimals of the detail coefficients. Hence, it has little effect
on the two significant factors (i.e., the sign and first decimal)
of the rebuilt weights. BER is 0% in all cases which means
the signatures are verifiable with no errors. We further evaluate
the accuracy of VGG16 and AlexNet before/after applying the
best steganography level of 2-bits and present the results in
Table V (see Appendix VIII-A). The obtained accuracy results
are exactly the same. BER is 0% in both cases.

TABLE I
COMPARISON BETWEEN BASELINE CLASSIFICATION ACCURACY (%)

BEFORE AND AFTER APPLYING OUR DEEPAUTH WITH DIFFERENT
STEGANOGRAPHY LEVELS.

DeepAuth - Steganography levels
Dataset Baseline 1-bit 2-bits 3-bits 4-bits BER
MNIST 99.00 99.00 99.00 98.97 98.97 0
CIFAR-10 88.40 88.40 88.40 88.38 88.38 0
ImageNet 83.71 83.71 83.71 83.67 83.67 0

We note that the reported baseline accuracy from ImageNet
is below what is reported in ResNet18, VGG16 and AlexNet.
The reason behind this is due to the testing on a smaller subset
as ImageNet is an extensive dataset and it is computationally
very expensive to perform retraining and testing on the entire
dataset. Most of the literature (e.g., [14], [29], [41], [42]) re-
trained these architectures on smaller datasets such as MNIST
and CIFAR-10 for experimenting their models. However, we
were very interested in going one step further by trying our
algorithm on the various original architectures already trained
on a large scale dataset.

Distortion: Table II presents the PRD distortion measure-
ments between the actual layers and the stego form (i.e., after
applying our DeepAuth 2-bits) as well as between the original
and extracted form (i.e., after removing our DeepAuth). All
PRDs are very low at ≤ 0.25% with an average of ≤ 0.20%.
In the signal processing context, PRDs ≤ 1% is regarded as a
stable with little impact. As a proof, Ibaida et al. [43] achieved
an average of 0.60%. This also has been proven (see Table

TABLE II
PRD RESULTS FOR THE 3 MODELS USING DIFFERENT DATASETS

MNIST CIFAR-10 ImageNet
Layer
No

PRD %
Stego

PRD %
Extract

PRD %
Stego

PRD %
Extract

PRD %
Stego

PRD %
Extract

1 0.095 0.103 0.096 0.102 0.097 0.100
2 0.101 0.114 0.099 0.113 0.100 0.112
3 0.094 0.101 0.092 0.102 0.093 0.100
4 0.086 0.094 0.087 0.096 0.088 0.095
5 0.189 0.209 0.190 0.212 0.191 0.208
6 0.204 0.228 0.211 0.228 0.206 0.224
7 0.229 0.250 0.221 0.247 0.223 0.252
8 0.233 0.253 0.229 0.231 0.232 0.257
9 0.220 0.227 0.233 0.237 0.242 0.253
10 0.252 0.284 0.250 0.253 0.256 0.255
11 0.250 0.252 0.253 0.259 0.248 0.257
12 0.249 0.254 0.249 0.242 0.255 0.252
13 0.217 0.237 0.215 0.236 0.215 0.235
14 0.215 0.244 0.220 0.233 0.216 0.238
15 0.243 0.253 0.245 0.252 0.240 0.243
16 0.235 0.245 0.238 0.247 0.240 0.249
17 0.243 0.247 0.242 0.249 0.250 0.259
18 0.244 0.245 0.250 0.240 0.259 0.259

Avg 0.20 0.213 0.202 0.213 0.204 0.218

I) by achieving the exact model accuracy before and after
applying our DeepAuth. We further evaluate the distortion
impact on VGG16 and AlexNet before/after applying the best
steganography level of 2-bits and present the results in Table
VI (shown in Appendix VIII-B). All PRDs are very low and
matching the early findings.

Fig. 12 shows example weights from various layers of
CIFAR-10, MNIST and ImageNet using the ResNet18 archi-
tecture. The plots demonstrate a visual comparison between
(a) the original weights, (b) the stego form, and (c) after the
extraction process. Fig. 19 (see Appendix VIII-E) also presents
weights samples from AlexNet and VGG16, respectively. From
all cases, it is clear that DeepAuth has no noticeable impact.

We finally perform an out of the box experiment (see Fig.
18 in Appendix VIII-C) where we pick random input samples
from the Internet and observe the classification accuracy of
the original baseline DNN models vs protected version using
DeepAuth. We use three architectures i.e., ResNet18, VGG16,
and AlexNet. The obtained accuracy results from all models
are exactly the same before and after applying DeepAuth.

All results prove that our DeepAuth with steganography
level of 2-bits is stable and has little influence on the hidden
layers. In other words, it does not degrade the accuracy of the
stego model when compared to the original model.

D. Attack Scenarios

Recall that one of our goals of developing DeepAuth in the
frequency domain is to ensure that any slight change in the
model should be detected even if the attacked models have
the same accuracy. To test the stated goal, we test the stego
models against the state-of-the-art attacks. We choose three
popular manipulation attacks: (1) input poisoning, (2) output
poisoning, and (3) fine-tuning. These attacks are difficult to
detect as they keep all DNN architecture features, such as

10

hidden layers, output classes, number of weights, and the
classification accuracy, intact.

(a) MNIST training image of number “0” (b) CIFAR-10 training image of “deer”

Original – labelled

as “0”

Backdoored – to misclassify

as “3”

Original – labelled

as “deer”

Backdoored – to misclassify

as “dog”

Fig. 13. Two random images from MNIST and CIFAR-10 before and after
inserting the backdoors (i.e., red sticky note).

1) Input Poisoning: It is a backdooring attack on DNN to
misclassify only when it is shown a poisoned sample (recall
Fig. 1) [14]. It is an attack in which the attacker retrains the
model by using a modified sample and corresponding label
(not reflecting the ground truth). More precisely, the adversary
takes model D with its original training dataset Dtrain. The
attacker then picks an image g from Dtrain, inserts a backdoor
on it (e.g., simple sticky note) to be gadv , and reinjects gadv

with a different label to Dtrain to be Dadv
train. The attacker

finally retrains D with the poisoned dataset Dadv
train to obtain

poisoned model Dadv . The severe danger of Dadv is that it
(a) does not degrade the baseline accuracy, and (b) is difficult
to detect unless the trigger is known.

We implement this attack on MNIST and CIFAR-10 pro-
tected models by generating D̃1 and D̃2. As shown in Fig.
13, we randomly pick g1 from MNIST as number ‘0’, insert
a backdoor, and reinject it as number ‘3’. In other words, D̃1

misclassifies number ‘0’ as number ‘3’ only when seeing an
image of digit ‘0’ with a backdoor. We also randomly pick
g2 from CIFAR-10 as an image of a ‘deer’, insert a backdoor,
and reinject it as a ‘dog’. We retrain the protected D̃1 and
D̃2 with the poisoned MNIST and CIFAR-10 and obtained

˜Dadv
1 and ˜Dadv

2 . All training parameters are the same. Finally,
the accuracy and integrity of all hidden layers as well as an
output layer, BER of ˜Dadv

1 and ˜Dadv
2 are examined carefully

to answer the question: Can the poisoning attack be detected?
The answer is yes, and the results are summarized as follows,

TABLE III
A COMPARISON BETWEEN THE ORIGINAL, THE STEGO, AND THE

POISONED MODELS. (-) MEANS BEFORE DEEPAUTH. (�) MEANS HIDDEN
SIGNATURES MATCH CORRECTLY WITH 0% BER. (×) MEANS HIDDEN

SIGNATURES MISMATCH WITH ERROR % SHOWN IN BER.

MNIST CIFAR-10

Test
Origin
D1

Stego
D̃1

Poison
˜Dadv
1

Origin
D2

Stego
D̃2

Poison
˜Dadv
2

Accuracy 99.0% 99.0% 99.0% 88.4% 88.4% 88.7%
BER - 0% 71% - 0% 76%

Hidden
Layers
Integrity

- � × - � ×

Output
Integrity - � � - � �

(i) Table III shows a comparison between the original, stego
and poisoned models. From the accuracy perspective, it is clear

that there is no degradation; this means such attacks are hard
to detect by observing the accuracy. We even observed a slight
accuracy increase in the CIFAR-10 poisoned model due to the
retraining process. However, BER of the hidden signatures
retrieved from deep layers (˜Dadv

1 =71% and ˜Dadv
2 =76%)

shows a major mismatch. We can thus detect the attacks. The
integrity of the output layer is still protected as its current
hash is the same as the retrieved one. This is not surprising as
the input poisoning attack only affects the hidden weights to
cause misclassification and does not change the output layer.

(ii) Fig. 14 depicts a deep dive into the deep layers in
frequency domain of both stego models (D̃1 and D̃2) and
the poisoned models (˜Dadv

1 and ˜Dadv
2). (a1) vs (a2) are

the frequency domain wavelet coefficients (i.e., where the
signature’s bits are randomly hidden) from MNIST model.
(b1) vs (b2) are the same but from CIFAR-10. It is clear that
they are widely different, especially in the third and fourth
decimal values (i.e., where hidden signatures reside). This
proves that input poisoning attacks to even one image results
in completely different wavelet coefficients; hence, DeepAuth
can detect such attacks.

(i) MNIST Model (ii) CIFAR-10 Model

(a1) Stego Wavelet Coefficients

(a2) Poisoned Wavelet Coefficients

(b1) Stego Wavelet Coefficients

(b2) Poisoned Wavelet Coefficients

vs vs

Fig. 14. A deep dive into the resultant Wavelet coefficients of the stego (i.e.,
protected) weights before/after the attack. It shows how different they are after
the poison attack which explains how our DeepAuth can detect it.

2) Output Poisoning: In this type of attacks, only the output
classes are tampered to cause misclassification [15]. The rest
of the model, including deep layers parameters and weights
are all frozen and untouched; this makes detecting such attacks
very challenging. Although this attack can be easily detected
in small output classes by looking at the classification output,
it is much more difficult in a very large output scenario.

57388b2a78606fff1a93407b4b0c7cda

0a91d56f4910021afef6de2bcb62602d

d3bf1adbe0e1017d206d8550b84b612c

bae768ac6c088270af6419b167ce1850

Output Classes – Stego Model

Output Classes – Poisoned Model

Output Classes – Stego Model

Output Classes – Poisoned Model

Hidden:

Calculated:

Hidden:

Calculated:

MNIST CIFAR-10

VS VS

Fig. 15. A comparison of the output layer hash between the embedded version
in deep layers vs the calculated version from the poisoned output layer.

11

We implement this attack by only manipulating one class
in the output layer of both MNIST and CIFAR-10 protected
models. We flip the class ‘0’ with ‘3’ in MNIST and the class
‘deer’ with ‘dog’ in CIFAR-10. Although all deep layers are
the same, our DeepAuth is able to detect the attack (see Fig.
15) as the output layer hash embedded as part of the signature
in each hidden layer is different from the newly calculated one
from the current output layer.

3) Fine-tuning: It is another type of attack that an adversary
uses to slightly manipulate the model which may degrade
or even improve the accuracy [29]. In both scenarios, it is
important for the model owner to ensure that the integrity and
authenticity of their released model is preserved. To perform
this attack, one has to retrain the model using the same
dataset with minor parameters tuning such as the learning rate.
The resultant model will converge to another local minimum,
which might be better, worse, or even the same. Can DeepAuth
detect this type of attack?

We implement this attack by only changing one parameter,
which is the learning rate from (1e-4) to (1e-3). The main
reason behind choosing learning rate is that we do not want
to manipulate many parameters to induce bias and make the
attacks easily detectable.

Table IV presents a result comparing the protected model
with the fine-tuned model. Despite a slight increase in the
accuracy, our DeepAuth technique can detect the attack from
both BER and the integrity of the hidden layers. It is im-
portant to note that such fine tunes cannot be detected by a
simple analysis of hidden layers. As a proof, Fig. 16 shows
a histogram comparison between the protected models and
fine-tuned ones of both MNIST and CIFAR-10. The density
distribution looks almost identical. However, taking a deep
dive examination to our DeepAuth frequency domain, as
shown in Fig. 17, shows a major change. In other words,
the wavelet transform coefficients are different as explained
early (see Fig. 14); hence, the attack can be detected using
differences in the wavelet transform coefficients.

TABLE IV
A COMPARISON BETWEEN THE STEGO AND THE FINE-TUNED MODELS.

MNIST CIFAR-10

Test
Stego
D̃1

Fine-tuned
˜Dtuned

1

Stego
D̃2

Fine-tuned
˜Dtuned

2
Accuracy 99.00% 99.47% 88.4% 89.20%

BER 0% 66% 0% 68%
Hidden Layers
Integrity � × � ×

Output Integrity � � � �

E. Limitations

In this section, we want to consider the possible adversarial
strategies, in which the attackers know the steganographic
algorithm in details and have full access to the protected
model.

Reverse Engineering: Our DeepAuth relies on the secrecy
of security parameters and not on the secrecy of the algorithm.
Hence, an attacker has to break two levels of security (i.e.,

Fig. 16. Histogram comparison of both MNIST and CIFAR-10 between the
stego vs Fine-tuned models. It highlights how difficult to detect such attacks.

Portion of MNIST Model Portion of CIFAR-10 Model

(a1) Stego Wavelet Coefficients

(a2) Fine-tuned Wavelet Coefficients

(b1) Stego Wavelet Coefficients

(b2) Fine-tuned Wavelet Coefficients

Fig. 17. A deep dive comparison between the stego wavelet coefficients vs
Fine-tuned version. It proves how our DeepAuth is able to detect the attack.

secret key and scramble vector) as explained in Section IV
to find where the signature’s bits are hidden. This is to
reshape the DNN weights from 4D to 2D form and produce
the randomisation matrix. We also ensure the generation of
a unique random matrix from the scramble vector for each
hidden layer (recall III-G). With the assumption that these two
security parameters are kept secret, it is difficult to reverse
engineer and find the hidden signature bits.

Accuracy Degradation: Our DeepAuth depends on
Daubechies Wavelet transform [44]. The decomposition is
based on the use of recurrence relations to generate progres-
sively finer discrete samplings of an implicit mother wavelet
function; each resolution is twice (i.e., approximation and
detailed) that of the previous scale. The detailed side is used in
DeepAuth to hide the signatures as it has little effect on recom-
posing the weights. Theoretically, if the DNN weights have
some unique properties which lead to a uniform frequency
domain transformation (i.e., all coefficients are significant),
then our DeepAuth will result in high distortion which in turns
degrades the model accuracy. This is a theoretical assumption
and we did not come across such cases in all our experiments.

Adversarial Samples: our DeepAuth focuses on determin-
ing if the DNN model has been manipulated after deployment.
However, it cannot decide if the input is adversarial or benign.

12

Hence, adversarial sample attacks are still applicable against
DeepAuth since it is designed for the integrity and authenticity
of the models.

VI. RELATED WORK

This section provides a brief review of related works on
the attacks and defenses on DNN model integrity.

Poisoning attacks: Several techniques have been pro-
posed in the literature to violate DNN integrity by inserting
backdoors. Gu et al. [14] introduced a poisoning attack in
their BadNets work. They generated a poisoned model by
retraining the original one with a poisoned training dataset.
The attacked model behaves almost like the benign one except
when the backdoor sign is encountered. They also showed that
the backdoor remains active even after the transfer learning (to
a new model). Liu et al. [22] further improved this attack by
tampering only a subset of weights to inject a backdoor. Chen
et al. [45] proposed another attack where the attacker does not
need to have access to the model. Instead, he/she reengineers
the model from scratch and trains it with a poisoned dataset.

Poisoning Defenses: Defense against backdoor attacks is
an active area of research, and a few approaches have appeared
in the literature. Liu et al. [21] introduced three different
defense mechanisms: (1) Employing anomaly detection in the
training data: such a method requires access to the poisoned
dataset, which is unrealistic in practice; (2) Retrain the model
to remove the backdoors: retraining does not guarantee the
complete removal of backdoors as demonstrated by previous
work in [14]; (3) Preprocessing the input data to remove the
trigger – it needs the adversary’s aids, which is hard to achieve.
Liu et al. [22] suggested that detecting the backdoor might
be possible by analysing the distribution of mislabelled data.
However, the victim needs to feed the model with a large
dataset of samples, rendering such an approach inefficient and
expensive. He et al. [23] recently introduced a defense tech-
nique by generating sensitive input samples to spot possible
changes in hidden weights and produce different outputs. Their
model works successfully if the attack tampers the hidden
weights in such a way that different neurons are fired.
Despite being robust, these defense techniques lack a mecha-
nism to track the integrity and authenticity of the hidden and
outer layers by sealing their weights after generating them.

Adversarial Samples: It is a type of an evasion attack
[46]. It manipulates the input data to evade a trained DNN
model at the testing time. In other words, it does not poison
the model. Rather, it crafts adversarial samples that lead to
misclassification by the model. Attacks: Fast gradient sign
method by Goodfellow et al. [47], basic iterative method by
Kurakin et al. [48], DeepFool by Moosavi et al. [49], Jacobian-
based Saliency map method by Papernot et al. [50], and Deep-
Xplore method by Pei et al. [51] are a few examples of these
attacks. Defenses: Adversarial sample detection mechanism is
a very active area of research. Examples include a statistical
measurement using local intrinsic dimensionality by Ma et
al. [16], performing denoiser process on the incoming input

as in Magnet [17] and high representation denoiser by Liao
et al. [18], feature squeezing mechanism to reduce the colour
depth of images by Xu et al. [19], and using network invariant
checking by Shiqing et al. [20].

This stream of work is very promising in a black-box setup
to determine if the incoming input is benign or adversarial.
However, they cannot find out if the integrity of DNN model
itself is maintained or violated by poisoning attacks.

Watermarking: Some works use watermarking to protect
the Intellectual Property (IP) of DNN models. Uchide et al.
[52], [53] proposed a method of embedding a small watermark
into deep layers to protect the owner’s IP. This work provides
a significant leap as the first attempt to watermark neural
networks. Zang et al. [41] further extended the technique to
the black-box scenario. Merrer et al. [42] introduced 1-bit
watermark that is built upon model boundaries modification
and the use of random adversarial samples that lie near
the decision boundaries. Rouhani et al. [54] proposed an
IP protection watermarking technique that not only protects
the static weights like previous works but also the dynamic
activations. Recently, Adi et al. [15] extended the backdoor
approach into a watermarking scheme by inserting a backdoor
to claim the ownership of the model.

The focus of this stream of works is to claim the ownership
of the models by building a persistent watermark, but not
protecting the model integrity as such (i.e., answering the
question: has the model been changed?). In other words, even
if the model is poisoned or fine-tuned many times, the designed
watermark should stay the same to ascertain the ownership.
To the best of our knowledge, we are not aware of previous
attempts that use watermarking or steganography to protect
the integrity and authenticity of DNN models.

VII. CONCLUSION

We propose a novel wavelet-based steganographic tech-
nique, called DeepAuth, to protect the integrity of DNN
models. DeepAuth derives a signature of the model using its
structural information such as dataset hash, model input size,
layer dimensions, total weights and output layer, and hides it
within the model. To overcome the resultant high distortion
due to hiding, which is inherent to steganography, DeepAuth
uses a wavelet-based technique to transform the weights in
each layer from the spatial domain to the frequency domain.
It then utilizes the approximation coefficients to preserve the
accuracy of the model and the detailed coefficients to hide
the signature using both secure key and scramble vector. We
performed theoretical analysis as well as empirical studies.
The analysis showed that DeepAuth can hide about 1KB
signature in each layer with 256-bit security level without
degrading the accuracy of the model. Several experiments
were performed on 3 pre-trained models using 3 datasets
against 3 types of manipulation attacks. The results prove that
DeepAuth is verifiable at all times with no noticeable effect
on classification accuracy, and robust against a multitude of
known DNN manipulation attacks.

13

REFERENCES

[1] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115(3):211–252,
2015.

[2] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[3] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen,
attend and spell: A neural network for large vocabulary conversational
speech recognition. In 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 4960–4964. IEEE,
2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[5] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484, 2016.

[6] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16), pages 265–283, 2016.

[7] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770–778,
2016.

[9] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[11] Google Inc. Google machine learning engine and ai.
https://cloud.google.com/ml-engine/, Accessed 12 Jul. 2019.

[12] Microsoft Corp. Microsoft azure machine learning studio.
https://azure.microsoft.com/en-us/services/machine-learning-studio/,
Accessed 12 Jul. 2019.

[13] Amazon.com Inc. Amazon sagemaker: Machine learning for every
scientist. https://aws.amazon.com/sagemaker/, Accessed 12 Jul. 2019.

[14] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
arXiv preprint arXiv:1708.06733, 2017.

[15] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph
Keshet. Turning your weakness into a strength: Watermarking deep neu-
ral networks by backdooring. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1615–1631, 2018.

[16] Xingjun Ma, Bo Li, Yisen Wang, Sarah M Erfani, Sudanthi Wi-
jewickrema, Grant Schoenebeck, Dawn Song, Michael E Houle, and
James Bailey. Characterizing adversarial subspaces using local intrinsic
dimensionality. arXiv preprint arXiv:1801.02613, 2018.

[17] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against
adversarial examples. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 135–147.
ACM, 2017.

[18] Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu,
and Jun Zhu. Defense against adversarial attacks using high-level
representation guided denoiser. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1778–1787, 2018.

[19] Xu W, Evans D, and Qi Y. Feature squeezing: Detecting adversarial
examples in deep neural networks. in Proceedings of the 2018 Network
and Distributed Systems Security Symposium (NDSS), 2018. [Online].
Available: https://github.com/mzweilin/EvadeML-Zoo, 2018.

[20] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu
Zhang. Nic: Detecting adversarial samples with neural network invariant

checking. in Proceedings of the 2018 Network and Distributed Systems
Security Symposium (NDSS), 2019. [Online]., 2019.

[21] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In 2017
IEEE International Conference on Computer Design (ICCD), pages 45–
48. IEEE, 2017.

[22] Liu Y, Ma S, Aafer Y, Lee W.-C, Zhai J, Wang W, and Zhang
X. Trojaning attack on neural networks. in 25nd Annual Network
and Distributed System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-221, 2018. The Internet Society, 2018.
[Online]. Available: https://github.com/ PurduePAML/TrojanNN, 2018.

[23] Zecheng He, Tianwei Zhang, and Ruby B Lee. Verideep: Verifying in-
tegrity of deep neural networks through sensitive-sample fingerprinting.
arXiv preprint arXiv:1808.03277, 2018.

[24] Abbas Cheddad, Joan Condell, Kevin Curran, and Paul Mc Kevitt.
Digital image steganography: Survey and analysis of current methods.
Signal processing, 90(3):727–752, 2010.

[25] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton
Kalker. Digital watermarking and steganography. Morgan kaufmann,
2007.

[26] Yann LeCun, LD Jackel, Léon Bottou, Corinna Cortes, John S Denker,
Harris Drucker, Isabelle Guyon, Urs A Muller, Eduard Sackinger, Patrice
Simard, et al. Learning algorithms for classification: A comparison on
handwritten digit recognition. Neural networks: the statistical mechanics
perspective, 261:276, 1995.

[27] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. Technical report, Citeseer, 2009.

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[29] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns:
A generic watermarking framework for ip protection of deep learning
models. arXiv preprint arXiv:1804.00750, 2018.

[30] Jürgen Schmidhuber. Deep learning in neural networks: An overview.
Neural networks, 61:85–117, 2015.

[31] Chitra Biswas, Udayan Das Gupta, and Md Mokammel Haque. An
efficient algorithm for confidentiality, integrity and authentication using
hybrid cryptography and steganography. In 2019 International Confer-
ence on Electrical, Computer and Communication Engineering (ECCE),
pages 1–5. IEEE, 2019.

[32] Peter Eze, Udaya Parampalli, Robin Evans, and Dongxi Liu. Integrity
verification in medical image retrieval systems using spread spectrum
steganography. In Proceedings of the 2019 on International Conference
on Multimedia Retrieval, pages 53–57. ACM, 2019.

[33] Stephane G Mallat. A theory for multiresolution signal decomposition:
the wavelet representation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 11(7):674–693, 1989.

[34] Alexander D Poularikas. Transforms and applications handbook. CRC
Press, 2010.

[35] David Salomon. Data compression: the complete reference. Springer,
2004.

[36] Ibrahim Khalil and Fahim Sufi. Real-time ecg data transmission with
wavelet packet decomposition over wireless networks. In Intelligent
Sensors, Sensor Networks and Information Processing, 2008. ISSNIP
2008. International Conference on, pages 267–272. IEEE, 2008.

[37] Jiaxin Ning, Jianhui Wang, Wenzhong Gao, and Cong Liu. A wavelet-
based data compression technique for smart grid. Smart Grid, IEEE
Transactions on, 2(1):212–218, 2011.

[38] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[39] A Enis Cetin and Hayrettin Köymen. Compression of digital biomedical
signals. The Biomedical Engineering Handbook: Second Edition. Joseph
D. Bonzino, Ed. CRC Press LLC, 2000.

[40] Bernard Sklar. Digital communications, volume 2. Prentice Hall NJ,
2001.

[41] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin,
Heqing Huang, and Ian Molloy. Protecting intellectual property of deep
neural networks with watermarking. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, pages 159–172.
ACM, 2018.

14

[42] Erwan Le Merrer, Patrick Perez, and Gilles Trédan. Adversarial frontier
stitching for remote neural network watermarking. arXiv preprint
arXiv:1711.01894, 2017.

[43] A. Ibaida and I. Khalil. Wavelet-based ecg steganography for protecting
patient confidential information in point-of-care systems. IEEE Trans-
actions on Biomedical Engineering, 60(12):3322–3330, Dec 2013.

[44] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets.
Communications on pure and applied mathematics, 41(7):909–996,
1988.

[45] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526, 2017.

[46] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317 – 331, 2018.

[47] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[48] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial
examples in the physical world. arXiv preprint arXiv:1607.02533, 2016.

[49] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2574–2582, 2016.

[50] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learning
in adversarial settings. In 2016 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 372–387. IEEE, 2016.

[51] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore:
Automated whitebox testing of deep learning systems. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 1–18.
ACM, 2017.

[52] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh.
Embedding watermarks into deep neural networks. In Proceedings of
the 2017 ACM on International Conference on Multimedia Retrieval,
pages 269–277. ACM, 2017.

[53] Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shinichi Satoh.
Digital watermarking for deep neural networks. International Journal
of Multimedia Information Retrieval, 7(1):3–16, 2018.

[54] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns:
A generic watermarking framework for ip protection of deep learning
models. arXiv preprint arXiv:1804.00750, 2018.

VIII. APPENDIX

A. Accuracy Evaluation - AlexNet and VGG16

Table V shows the exact accuracy results from two DNN
architectures: AlexNet and VGG16. They have been evaluated
before and after applying the best steganography level of 2-
bits observed in ResNet18. The obtained accuracy results are
the same. BER is 0% in both cases.

TABLE V
COMPARISON BETWEEN BASELINE CLASSIFICATION ACCURACY (%)

BEFORE AND AFTER APPLYING OUR DEEPAUTH WITH DIFFERENT CNN
ARCHITECTURES.

Model Baseline DeepAuth - 2-bits level BER
AlexNet 90.58 90.58 0
VGG16 91.70 91.70 0

B. Distortion Evaluation - AlexNet and VGG16

Table VI presents the distortion measurements for AlexNet
and VGG16. We compare the original with both stego and
extracted versions. All PRDs are very low ≤ 0.25% with
an average of ≤ 0.20% which matches our early findings in
ResNet18.

TABLE VI
PRD RESULTS FOR ALEXNET AND VGG16

AlexNet VGG16
Layer
No

PRD %
Stego

PRD %
Extract

PRD %
Stego

PRD %
Extract

1 0.0173 0.0173 0.0602 0.0602
2 0.0470 0.0471 0.0691 0.0692
3 0.1003 0.1002 0.0556 0.0554
4 0.0560 0.0561 0.0581 0.0581
5 0.1742 0.1743 0.2555 0.2556
6 0.2368 0.2369 0.2540 0.2541
7 0.2587 0.2587 0.2441 0.2496
8 0.1995 0.1999 0.2509 0.2510
9 0.2101 0.2103 0.2397 0.2396

10 0.2335 0.2378 0.2342 0.3343
11 0.2187 0.2191 0.2382 0.2380
12 0.2378 0.2386 0.2509 0.2515
13 0.2317 0.2316 0.2493 0.2542
14 0.2313 0.2314 0.2487 0.2483

Avg 0.1752 0.1757 0.1992 0.2071

AA

C. Accuracy Evaluation with Random Samples

An out of the box experiment to monitor the accuracy results
before and after applying DeepAuth. Several samples have
been picked from the Internet. We only pre-process them by
reducing their sizes to fit the input requirements of ResNet18
and VGG16 as (224x224x3), and AlexNet as (227x227x3).
The obtained accuracy results are exactly the same in all cases.

Cockatoo Frog Mouse Shark Black Widow Tiger

99.0 92.7 98.2 94.7 72.7 79.2

99.0 92.7 98.2 94.7 72.7 79.2

99.1 84.9 98.3 82.6 86.1 80.3

99.1 84.9 98.3 82.6 86.1 80.3

99.2 93.7 99.1 90.3 87.7 83.9

99.2 93.7 99.1 90.3 87.7 83.9

A
le
x

N
e
t Baseline

DeepAuth

V
G
G
1
6 Baseline

DeepAuth

R
e
sN

e
t

1
8

Baseline

DeepAuth

Fig. 18. A detailed classification accuracy using sample images before/after
applying our DeepAuth on three different DNN architectures, i.e., AlexNet,
VGG16 and ResNet18. In all cases, our DeepAuth has no noticeable effect
on the accuracy.

D. Weights Decomposition Tree

Fig. 20 depicts a graphical representation of the resultant
wavelet tree after transforming series of weights from their
spatial domain into their 5-levels frequency domain.

15

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

V
a
lu

e

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 50 100 150 200 250 300 350 400

Sample number

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

V
a
lu

e

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
a
lu

e

0 100 200 300 400

Sample number

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

V
a
lu

e

(c)

(a)

Original Weights - AlexNet

(b)

Original Weights - VGG16

Stego Weights - VGG16

Extracted Weights - VGG16Extracted Weights - AlexNet

Stego Weights - AlexNet

Fig. 19. Four examples of DNN hidden layers weights obtained using other CNN architectures, AlexNet and VGG16: (a) the original form; (b) stego form
(i.e., containing hidden signature) that obtained after applying our DeepAuth; and (c) extracted form after removing the hidden signature.

1,0 1,1

2,0

3,0

2,1 2,2 2,3

3,1 3,2 3,3 3,4 3,5 3,6 3,7

Level 1

Level 2

Level 3

4,0 4,1 4,14

5,0
5,30

Level 4

Level 5

 Detailed

Sub-bands

Approximation

 Sub-bands

5,1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5,9 5,10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5,18 5,19 5.20 5.21 5.22 5.23 5.24 5.25 5.26 5,315.27 5.28 5.29

4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4,15

Level 5

DNN Hidden Layer n Weights

Coefficient Coefficient

DWT

 Wavelet

Transform

Fig. 20. De-composing a series of DNN hidden layer weights into 32 sub-
bands using Wavelet transform.

E. Weights Comparison - AlexNet and VGG16

Fig. 19 demonstrates a visual comparison between series
of weights in original, stego and extracted versions. Examples
are randomly picked from AlexNet and VGG16.

16

